Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Debris flows are powered by sediment supplied from steep hillslopes where soils are often patchy and interrupted by bare‐bedrock cliffs. The role of patchy soils and cliffs in supplying sediment to channels remains unclear, particularly surrounding wildfire disturbances that heighten debris‐flow hazards by increasing sediment supply to channels. Here, we examine how variation in soil cover on hillslopes affects sediment sizes in channels surrounding the 2020 El Dorado wildfire, which burned debris‐flow prone slopes in the San Bernardino Mountains, California. We focus on six headwater catchments (<0.1 km2) where hillslope sources ranged from a continuous soil mantle to 95% bare‐bedrock cliffs. At each site, we measured sediment grain size distributions at the same channel locations before and immediately following the wildfire. We compared results to a mixing model that accounts for three distinct hillslope sediment sources distinguished by local slope thresholds. We find that channel sediment in fully soil‐mantled catchments reflects hillslope soils (D50 = 0.1–0.2 cm) both before and after the wildfire. In steeper catchments with cliffs, channel sediment is consistently coarse prior to fire (D50 = 6–32 cm) and reflects bedrock fracture spacing, despite cliffs representing anywhere from 5% to 95% of the sediment source area. Following the fire, channel sediment size reduces most (5‐ to 20‐fold) in catchments where hillslope sources are predominantly soil covered but with patches of cliffs. The abrupt fining of channel sediment is thought to facilitate postfire debris‐flow initiation, and our results imply that this effect is greatest where bare‐bedrock cliffs are present but not dominant. A patchwork of bare‐bedrock cliffs is common in steeplands where hillslopes respond to channel incision by landsliding. We show how local slope thresholds applied to such terrain aid in estimating sediment supply conditions before two destructive debris flows that eventually nucleated in these study catchments in 2022.more » « less
-
Abstract Ecosystem engineers can generate hotspots of ecological structure and function by facilitating the aggregation of both resources and consumers. However, nearly all examples of such engineered hotspots come from long‐lived foundation species, such as marine and freshwater mussels, intertidal cordgrasses, and alpine cushion plants, with less attention given to small‐bodied and short‐lived animals. Insects often have rapid life cycles and high population densities and are among the most diverse and ubiquitous animals on earth. Although these taxa have the potential to generate hotspots and heterogeneity comparable to that of foundation species, few studies have examined this possibility. We conducted a mesocosm experiment to examine the degree to which a stream insect ecosystem engineer, the net‐spinning caddisfly (Tricoptera:Hydropsychidae), creates hotspots by facilitating invertebrate community assembly. Our experiment used two treatments: (1) stream benthic habitat with patches of caddisfly engineers present and (2) a control treatment with no caddisflies present. We show that compared to controls, caddisflies increased local resource availability measured as particulate organic matter (POM) by 43%, ecosystem respiration (ER) by 70%, and invertebrate density, biomass, and richness by 96%, 244%, and 72%, respectively. These changes resulted in increased spatial variation of POM by 25%, invertebrate density by 76%, and ER by 29% compared to controls, indicating a strong effect of caddisflies on ecological heterogeneity. We found a positive relationship between invertebrate density and ammonium concentration in the caddisfly treatment, but no such relationship in the control, indicating that either caddisflies themselves or the invertebrate aggregations they create increased nutrient availability. When accounting for the amount of POM, caddisfly treatments increased invertebrate density by 48% and richness by 40% compared to controls, suggesting that caddisflies may also enhance the nutritional quality of resources for the invertebrate assemblage. The caddisfly treatment also increased the rate of ecosystem respiration as a function of increasing POM compared to the control. Our study demonstrates that insect ecosystem engineers can generate heterogeneity by concentrating local resources and consumers, with consequences for carbon and nutrient cycling.more » « less
-
Abstract. The detachment of rock fragments from fractured bedrock on hillslopes creates sediment with an initial size distribution that sets the upper limitson particle size for all subsequent stages in the evolution of sediment in landscapes. We hypothesize that the initial size distribution shoulddepend on the size distribution of latent sediment (i.e., fracture-bound blocks in unweathered bedrock) and weathering of blocks both before andduring detachment (e.g., disintegration along crystal grain boundaries). However, the initial size distribution is difficult to measure because theinterface across which sediment is produced is often shielded from view by overlying soil. Here we overcome this limitation by comparing fracturespacings measured from exposed bedrock on cliff faces with particle size distributions in adjacent talus deposits at 15 talus–cliff pairs spanning awide range of climates and lithologies in California. Median fracture spacing and particle size vary by more than 10-fold and correlate stronglywith lithology. Fracture spacing and talus size distributions are also closely correlated in central tendency, spread, and shape, with b-axisdiameters showing the closest correspondence with fracture spacing at most sites. This suggests that weathering has not modified latent sedimenteither before or during detachment from the cliff face. In addition, talus at our sites has not undergone much weathering after deposition and isslightly coarser than the latent sizes because it contains unexploited fractures inherited from bedrock. We introduce a new conceptual frameworkfor understanding the relative importance of latent size and weathering in setting initial sediment size distributions in mountain landscapes. Inthis framework, hillslopes exist on a spectrum defined by the ratio of two characteristic timescales: the residence time in saprolite and weatheredbedrock and the time required to detach a particle of a characteristic size. At one end of the spectrum, where weathering residence times arenegligible, the latent size distribution can be used to predict the initial size distribution. At the other end of the spectrum, where weatheringresidence times are long, the latent size distribution can be erased by weathering in the critical zone.more » « less
-
null (Ed.)Abstract Erosion at Earth’s surface exposes underlying bedrock to climate-driven chemical and physical weathering, transforming it into a porous, ecosystem-sustaining substrate consisting of weathered bedrock, saprolite, and soil. Weathering in saprolite is typically quantified from bulk geochemistry assuming physical strain is negligible. However, modeling and measurements suggest that strain in saprolite may be common, and therefore anisovolumetric weathering may be widespread. To explore this possibility, we quantified the fraction of porosity produced by physical weathering, FPP, at three sites with differing climates in granitic bedrock of the Sierra Nevada, California, USA. We found that strain produces more porosity than chemical mass loss at each site, indicative of strongly anisovolumetric weathering. To expand the scope of our study, we quantified FPP using available volumetric strain and mass loss data from granitic sites spanning a broader range of climates and erosion rates. FPP in each case is ≥0.12, indicative of widespread anisovolumetric weathering. Multiple regression shows that differences in precipitation and erosion rate explain 94% of the variance in FPP and that >98% of Earth’s land surface has conditions that promote anisovolumetric weathering in granitic saprolite. Our work indicates that anisovolumetric weathering is the norm, rather than the exception, and highlights the importance of climate and erosion as drivers of subsurface physical weathering.more » « less
An official website of the United States government
